Skip to main content
Log in

Physiological-ecological impacts of flooding on riparian forest ecosystems

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Riparian forest ecosystems are important for their high productivity of biomass, their biodiversity, and ecological services including control of floods and erosion, removal of nutrients from agricultural runoff, alleviation of pollution effects, and as habitats for birds and mammals. Intermittent cycles of flooding by meandering streams followed by soil drainage are essential for regeneration, optimal growth, preservation of biodiversity, and sustainability of these valuable ecosystems. The straightening of river channels and disruption of intermittent river flow by dams lead to decreases in downstream forest productivity and ecological services, reflecting arrested forest regeneration, suppression of tree growth, and early tree mortality. These responses result from inadequate seed supplies and poor seedbeds, as well as deficiencies of ground water and mineral nutrients. Water deficits in downstream forest trees induce dysfunctions in photosynthesis and mineral nutrition, which lead to growth inhibition and plant mortality. Very few bottomland forest species can withstand extended soil inundation. Hence, prolonged upstream flooding by interruption of river flow is followed by massive losses of biomass as a result of poor seed germination, arrested plant growth, and accelerated mortality of trees. The adverse impacts of flooding on upstream forests are associated with physiological dysfunctions induced by soil anaerobiosis. These include changes in respiration, photosynthesis, protein synthesis, mineral nutrition, and hormone relations, together with increased exposure to a variety of phytotoxic compounds. There is urgent need for developing more integrated and holistic flood-management policies that will recognize the need for protecting and restoring valuable riparian forests while also meeting other flood-control objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abeles, F. B. 1985. Ethylene and plant development. An introduction. p. 1–8. In J. A. Roberts and G. A. Tucker (eds.) Ethylene and Plant Development. Butterworth, London, England.

    Google Scholar 

  • Al-Ani, A., F. Bruzau, P. Raymond, V. Saint-Ges, J. M. LeBlanc, and A. Pradet. 1985. Germination, respiration and adenylate energy charge of seeds at various oxygen partial pressures. Plant Physiology 79:885–890.

    Article  CAS  PubMed  Google Scholar 

  • Alben, A. O. 1958. Waterlogging of subsoil associated with scorching and defoliation of Stuart pecan trees. Proceedings of the American Society for Horticultural Science 72:219–223.

    Google Scholar 

  • Andersen, P. C., P. B. Lombard, and M. N. Westwood. 1984. Effect of root anaerobiosis on the water relations of several Pyrus species. Physiologia Plantarum 62:245–252.

    Article  Google Scholar 

  • Angeles, G. 1992. The peridern of flooded and non-flooded Ludwigea octovalvis (Onagraceae). International Association of Wood Anatomists Bulletin 13:195–200.

    Google Scholar 

  • Angeles, G., R. F. Evert, and T. T. Kozlowski. 1986. Development of lenticels and adventitious roots in flooded Ulmus americana seedlings. Canadian Journal of Forest Research 16:585–590.

    Article  Google Scholar 

  • Angelov, M. N., S. S. Sung, R. L. Doong, W. R. Harms, P. P. Kormanik, and C. C. Black, Jr. 1996. Long-and short-term flooding effects on survival and sink-source relationships of swampadapted tree species. Tree Physiology 16:477–484.

    PubMed  Google Scholar 

  • Armstrong, W., R. Brandle, and M. B. Jackson. 1994. Mechanisms of flood tolerance in plants. Acta Botanica Neerlandica 43:307–358.

    CAS  Google Scholar 

  • Bayley, P. B. 1995. Understanding large river floodplain ecosystems. BioScience 45:153–158.

    Article  Google Scholar 

  • Bedinger, M. S. 1981. Hydrology of the bottomland forests of the Mississippi embayment. p. 161–176. In J. R. Clark and J. Benforado (eds.) Wetlands of Bottomland Forests. Elsevier, New York, NY, USA.

    Google Scholar 

  • Blaker, N. S. and J. B. Mc Donald. 1981. Predisposing effects of soil moisture extremes on the susceptibility of Rhododendron to Phytophthora root and crown rot. Phytopathology 71:831–834.

    Article  Google Scholar 

  • Borchert, R. 1994. Water status and development of tropical trees during seasonal drought. Trees 8:115–125.

    Article  Google Scholar 

  • Bowen, G. D. 1973. Mineral nutrition of ectomycorrhizae. p. 151–205. In G. C. Marks and T. T. Kozlowski (eds.) Ectomycorrhizae. Academic Press, New York, NY, USA.

    Google Scholar 

  • Boyce, S. G. and N. D. Cost. 1974. Timber potentials in the wetland hardwoods. p. 130–151. In M. C. Blount (ed.) Water Resources Utilization, and Conservation in the Environment. Taylor Printing Company, Reynolds, GA, USA.

    Google Scholar 

  • Brink, V. C. 1954. Suvival of plants under flood in the lower Fraser River Valley, British Columbia. Ecology 35:94–95.

    Article  Google Scholar 

  • Broadfoot, W. M. and H. L. Williston. 1973. Flooding effects on southern forests. Journal of Forestry 71:584–587.

    Google Scholar 

  • Carlile, M. J. 1986. The zoospore and its problems. p. 105–118. In P. G. Ayres and L. Boddy (eds.) Water, Fungi, and Plants. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Chirkova, T. V. and T. S. Gutman. 1972. Physiological role of branch lenticels in willow and poplar under conditions of root anaerobiosis. Soviet Plant Physiology (Eng. Transl.) 19:289–295.

    Google Scholar 

  • Clark, J. R. and J. Benforado (eds.). 1981. Wetlands of Bottomland Hardwood Forests. Elsevier, New York, NY, USA.

    Google Scholar 

  • Cook, J. M., A. F. Mark, and B. F. Shore. 1980. Responses of Leptospermum scoparium and L. ericoides (Myrtaceae) to waterlogging. New Zealand Journal of Botany 18:233–246.

    Google Scholar 

  • Coutts, M. P. 1982. The tolerance of tree roots to waterlogging. V. Growth of woody roots of Sitka spruce and lodgepole pine in waterlogged soil. New Phytologist 90:467–476.

    Article  Google Scholar 

  • Coutts, M. P. and J. J. Philipson. 1978. Tolerance of tree roots to waterlogging. II. Adaptation of Sitka spruce and lodgepole pine to waterlogged soil. New Phytologist 80:71–77.

    Article  Google Scholar 

  • Crawford, R. M. M. 1989. Studies in Plant Survival. Blackwell Scientific, Oxford, England.

    Google Scholar 

  • Crawford, R. M. M. 1993. Plant survival without oxygen. Biolgoist. 40:110–114.

    Google Scholar 

  • Crivelli, A. J., P. Grilles, and B. Lacaze. 1995. Responses of vegetation to a rise in water level at Kerkini reservoir (1982–1991), a Ramsar site in northern Greece. Environmental Management 19: 417–430.

    Article  Google Scholar 

  • Davies, F. S. and J. A. Flore. 1986a. Flooding, gas exchange and hydraulic conductivity of highbush blueberry. Physiologia Plantarum 67:545–551.

    Article  Google Scholar 

  • Davies, F. S. and J. A. Flore. 1986b. Short-term flooding effects on gas exchange and quantum yield of rabbiteye blueberry (Vaccinium ashei Reade). Plant Physiology 81:289–292.

    Article  PubMed  CAS  Google Scholar 

  • DeBell, D. S. and A. W. Naylor. 1972. Some factors affecting germination of swamp tupelo seeds. Ecology 53:504–506.

    Article  Google Scholar 

  • Drew, M. C. 1990. Oxygen deficiency in the root environment and plant mineral nutrition. p. 303–316. In M. B. Jackson, D. D. Davies, and H. Lambers (eds.). Plant Life under Oxygen Deprivation: Ecology, Physiology, and Biochemistry. SPB Academic Publishers, The Hague, The Netherlands.

    Google Scholar 

  • Dreyer, E., M. Colin-Bergrand, and P. Biron. 1991. Photosynthesis and shoot water status of seedlings from different oak species submitted to waterlogging. Annales des Sciencies Forestiere 48: 205–214.

    Article  Google Scholar 

  • Duncan, R. P. 1993. Flood disturbance and the coexistence of species in a lowland podocarp forest, south Westland. New Zealand Journal of Ecology 81:403–416.

    Google Scholar 

  • Duniway, J. M. and T. R. Gordon. 1986. Water relations and pathogen activity in soil. p. 119–137. In P. G. Ayres and L. Boddy (eds.) Water, Fungi, and Plants. Cambridge University Press. Cambridge, England.

    Google Scholar 

  • Else, M. A., A. E. Tiekstra, S. J. Croker, W. J. Davies, and M. B. Jackson. 1996. Stomatal closure in flooded tomato plants involves abscisic acid and a chemically unidentified anti-transpirant in xylem sap. Plant Physiology 112:239–247.

    CAS  PubMed  Google Scholar 

  • Erickson, N. E. 1989. Survival of plant materials established on a floodplain in central Oklahoma. Wildlife Society Bulletin 17:63–65.

    Google Scholar 

  • Fenner, P., W. W. Brady, and D. R. Patten. 1985. Effects of regulated water flows on regneration of Fremont cottonwood. Journal of Range Management 38:135–138.

    Article  Google Scholar 

  • Filer, T. H. 1975. Mycorrhizae and soil microflora in a green tree reservoir. Forest Science 24:36–39.

    Google Scholar 

  • Fisher, H. M. and E. L. Stone. 1990a. Air-conducting porosity in slash pine roots from saturated soils. Forest Science 36:18–33.

    Google Scholar 

  • Fisher, H. M. and E. L. Stone. 1990b. Active potassium uptake by slash pine roots from O2-depleted solutions. Forest Science 36: 582–598.

    Google Scholar 

  • Gadgil, P. D. 1972. Effect of waterlogging on mycorrhizas of radiata pine and Douglas-fir. New Zealand Journal of Forest Science 2:222–226.

    Google Scholar 

  • Glinski, J. and W. S. Stepniewski. 1985. Soil Aeration and its Role for Plants. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Good, J. E. G., J. D. Winder, E. Sellers, and S. T. G. Williams. 1992. Species and clonal variations in growth responses to waterlogging and submersion in the genus Salix. Proceedings of the Royal Society of Edinburgh 98B:291–299.

    Google Scholar 

  • Green, W. E. 1947. Effect of water impoundment on tree mortality and growth. Journal of Forestry 45:118–120.

    Google Scholar 

  • Gregory, S. V. 1997. Riparian management in the 21st century. p. 69–85. In K. A. Kohn and J. F. Franklin (eds.) Creating a Forestry for the 21st Century: The Science of Ecosystem Management. Island Press, Washington, DC, USA.

    Google Scholar 

  • Haeuber, R. A. and W. K. Michener. 1998. Policy implications of recent natural and managed floods. BioScience 48:769–772.

    Article  Google Scholar 

  • Haissig, B. E. 1974. Metabolism during adventitious root primordium initiation and development. New Zealand Journal of Forest Science 4:324–337.

    CAS  Google Scholar 

  • Haissig, B. E. 1982. Carbohydrate and amino acid concentrations during adventitious root primordium development in Pinus banksiana Lamb. cuttings. Forest Science 28:813–821.

    Google Scholar 

  • Haissig, B. E. 1983. The rooting stimulus in pine cuttings. Proceedings of the International Plant Propagators Society 32:625–638.

    Google Scholar 

  • Haissig, B. E. 1986. Metabolic processes in adventitious rooting of cuttings. p. 141–189. In M. B. Jackson (ed.) New Root Formation in Cuttings. Martinus Nijhoff, Dordrecht, The Netherlands.

    Google Scholar 

  • Haissig, B. E. 1990. Reduced irradiance and applied auxin influence carbohydrate relations in Pinus banksiana cuttings during propagation. Physiologia Plantarum 78:455–461.

    Article  CAS  Google Scholar 

  • Hall, T. F. and G. E. Smith. 1955. Effects of flooding on woody plants. West Sandy dewatering project, Kentucky Reservoir. Journal of Forestry 53:281–285.

    Google Scholar 

  • Hammer, D. A. 1995. Water quality improvement: Functions of wetlands. p. 485–516. In W. A. Nierenberg (ed.) Encyclopedia of Environmental Biology. Volume 3. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Harley, J. L. 1969. The Biology of Mycorrhiza, 2nd ed. Leonard Hill, London, England.

    Google Scholar 

  • Harley, J. L. and S. E. Smith. 1983. Mycorrhizal Symbiosis. Academic Press, New York, NY, USA.

    Google Scholar 

  • Hinckley, T. M., R. O. Teskey, F. Duhme, and H. Richter. 1981. Temperate hardwood forests. p. 153–208. In T. T. Kozolowski (ed.) Water Deficits and Plant Growth. Volume 6. Academic Press, New York, NY, USA.

    Google Scholar 

  • Hodges, J. D. 1998. Minor alluvial floodplains. p. 325–341. In M. G. Messina and W. H. Conner (eds.), Southern Forested Wetlands: Ecology and Wetlands. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Hook, D. D. 1984. Adaptations to flooding with fresh water. p. 265–294. In T. T. Kozlowski (ed.) Flooding and Plant Growth. Academic Press, Orlando, FL, USA.

    Google Scholar 

  • Hook, D. D. and C. L. Brown. 1973. Root adaptations and relative flood tolerance of five hardwood species. Forest Science 19:225–229.

    Google Scholar 

  • Hook, D. D., O. G. Langdon, J. Stubbs, and C. L. Brown. 1970. Effects of water regimes on the survival, growth, and morphology of tupelo seedlings. Forest Science 16:304–311.

    Google Scholar 

  • Hook, D. D. and J. R. Scholtens. 1978. Adaptation and flood tolerance of tree species. p. 299–331. In D. D. Hook and R. M. M. Crawford (eds.) Plant Life in Anaerobic Environments. Ann Arbor Science Publications, Ann Arbor, MI, USA.

    Google Scholar 

  • Hosner, J. F. 1962. The southern bottomland region. p. 296–333. In J. W. Barrett (ed.) Regional Silviculture of the United States, Wiley, New York, NY, USA.

    Google Scholar 

  • Hosner, J. F. and S. G. Boyce. 1962. Relative tolerance to water saturated soil of various bottomland hardwoods. Forest Science 8: 180–186.

    Google Scholar 

  • Hughes, F. M. R. 1990. The influence of flooding regimes on forest distribution and composition in the Tona River floodplain, Journal of Applied Ecology 27:475–491.

    Article  Google Scholar 

  • Interagency Floodplain Management Review Committee. 1994. Sharing the challenge: floodplain management into the 21st century. Report to the administration floodplain management task force. U.S. Government Printing Office, Washington, DC, USA.

    Google Scholar 

  • Jackson, M. B. 1982. Ethylene as a growth promoting hormone under flooded conditions. p. 291–301. In P. F. Wareing (ed.) Plant Growth Substances. Academic Press, New York, NY, USA.

    Google Scholar 

  • Jackson, M. B. and M. C. Drew. 1984. Effects of flooding on growth and metabolism of herbaceous plants. p. 47–128. In T. T. Kozlowski (ed.) Flooding and Plant Growth. Academic Press, Orlando, FL, USA.

    Google Scholar 

  • Kassas, M. 1951. Studies in the ecology of Chippenham Fen. II. Recent history of the Fen from evidence of historical records, vegetation analysis, and tree ring analysis. Journal of Ecology 39:19–32.

    Article  Google Scholar 

  • Kawase, M. 1972. Effect of flooding on ethylene concentration in horticultural plants. Journal of the American Society for Horticultural Science 9:548–588.

    Google Scholar 

  • Kawase, M. 1978. Anaerobic elevation of ethylene concentration in waterlogged plants. American Journal of Botany 65:736–740.

    Article  CAS  Google Scholar 

  • Kennedy, R. A., M. E. Rumpho, and T. C. Fox. 1992. Anaerobic metabolism in plants. Plant Physiology 100:1–6.

    Article  CAS  PubMed  Google Scholar 

  • King, S. L., J. A. Allen, and J. W. McCoy. 1998. Long-term effects of a lock and dam and greentree reservoir management on a bottomland hardwood forest. Forest Ecology and Management 112:213–226.

    Article  Google Scholar 

  • Koller, D. 1972. Environmental control of seed germination. p. 1–101. In T. T. Kozlowski (ed.) Seed Biology, Volume 2. Academic Press, New York, NY, USA.

    Google Scholar 

  • Kozlowski, T. T. 1972. Shrinking and swelling of plant tissues. p. 1–64. In T. T. Kozlowski (ed.) Water Deficits and Plant Growth. Volume 3. Academic Press, New York, NY, USA.

    Google Scholar 

  • Kozlowski, T. T. 1972b. Physiology of water stress. U.S.D.A. Forest Service, Washington, DC, USA General Technical Report INT-1: 229–244.

    Google Scholar 

  • Kozlowski, T. T. 1973. Extent and significance of shedding of plant parts. p. 1–8. In T. T. Kozlowski (ed.) Shedding of Plant Parts. Academic Press, New York, NY, USA.

    Google Scholar 

  • Kozlowski, T. T. 1979. Tree Growth and Environmental Stresses. University of Washington Press, Seattle, WA, USA.

    Google Scholar 

  • Kozlowski, T. T. 1982a. Water supply and tree growth. Part I. Water deficits. Forestry Abstracts 43:57–95.

    Google Scholar 

  • Kozlowski, T. T. 1982b. Water supply and tree growth. Part II. Flooding. Forestry Abstracts 43:145–161.

    Google Scholar 

  • Kozlowski, T. T. 1983. Reduction in yield of forest and fruit trees by water and temperature stress. p. 67–88. In C. D. Raper and P. J. Kramer (eds.) Crop Reactions to Water and Temperature Stresses in Humid Temperate Climates. Westview Press, Boulder, CO, USA.

    Google Scholar 

  • Kozlowski, T. T. 1984a. Extent, causes, and impacts of flooding. p. 1–7. In T. T. Kozlowski (ed.) Flooding and Plant Growth. Academic Press, Orlando, FL, USA.

    Google Scholar 

  • Kozlowski, T. T. 1984b. Responses of woody plants to flooding. p. 129–164. In T. T. Kozlowski (ed.) Flooding and Plant Growth. Academic Press, Orlando, FL, USA.

    Google Scholar 

  • Kozlowski, T. T. 1984c. Plant responses to flooding of soil. Bio-Science 34:162–167.

    Google Scholar 

  • Kozlowski, T. T. 1986. Soil aeration and growth of forest trees. Scandinavian Journal of Forest Research 1:113–123.

    Article  Google Scholar 

  • Kozlowski, T. T. 1997. Responses of woody plants to flooding and salinity. Tree Physiology monograph No. 1. http://www.heronpublishing.com/tp/monograph/kozlowski.pdf

  • Kozlowski, T. T. 2000. Responses of woody plants to human-induced environmental stresses: Issues, problems and strategies for alleviating stress: Critical Reviews in Plant Sciences 19:91–170.

    Article  Google Scholar 

  • Kozlowski, T. T. 2002. Physiological ecology of natural regeneration of harvested and disturbed forest stands. Forest Ecology and Management 158:195–221.

    Article  Google Scholar 

  • Kozlowski, T. T. and S. G. Pallardy. 1979. Stomatal responses of Fraxinus pennsylvanica seedlings during and after flooding. Physiologia Plantarum 46:155–158.

    Article  Google Scholar 

  • Kozlowski, T. T. and S. G. Pallardy. 1984. Effects of flooding on water, carbohydrate, and mineral relations. p. 165–193. In T. T. Kozlowski (ed.) Flooding and Plant Growth. Academic Press, Orlando, FL, USA.

    Google Scholar 

  • Kozlowski, T. T. and S. G. Pallardy. 1997a. Physiology of Woody Plants, 2nd ed., Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Kozlowski, T. T. and S. G. Pallardy. 1997b. Growth Control in Woody Plants. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Kozlowski, T. T., P. J. Kramer, and S. G. Pallardy. 1991. The Physiological Ecology of Woody Plants. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Kramer, P. J. and J. S. Boyer. 1995. Water Relations of Plants and Soils. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Larson, K. D., B. Schaffer, F. S. Davies, and C. A. Sanchez. 1992. Flooding, mineral nutrition and gas exchange of mango tress. Scientia Horticulturae 52:113–124.

    Article  CAS  Google Scholar 

  • Levine, C. M. and J. C. Stromberg. 2001. Effects of flooding on native and exotic plant seedlings: Implications for restoring southwestern riparian forests by manipulating water and sediment flows. Journal of Arid Environments 49:111–131.

    Article  Google Scholar 

  • Ligon, F. K., W. E. Dietrich, and W. J. Thrush. 1995. Downstream ecological effects of dams. BioScience 45:183–192.

    Article  Google Scholar 

  • Lindsey, A. A., R. O. Petty, D. K. Sterling, and W. Van Asdall. 1961. Vegetation and environment along the Wabash and Tippecanoe Rivers. Ecological Monographs 31:105–156.

    Article  Google Scholar 

  • Lopez, O. L. and T. A. Kursar. 1999. Flood tolerance of four tropical tree species. Tree Physiology 19:925–932.

    PubMed  Google Scholar 

  • Loustalot, A. J. 1945. Influence of soil moisture conditions on apparent photosynthesis and transpiration of pecan leaves. Journal of Agricultural Research 71:519–532.

    CAS  Google Scholar 

  • McBride, J. R. and J. Strahan. 1984. Establishment and survival of woody riparian species on gravel bars of an intermittent stream. American Midland Naturalist 112:235–245.

    Article  Google Scholar 

  • McDermott, R. E. 1954. Effects of saturated soil on seedling growth of some bottomland hardwood species. Ecology 35:36–41.

    Article  Google Scholar 

  • McKee, W. H. Jr. and M. R. McKevlin. 1993. Geochemical processes and nutrient uptake by plants in hydric soils. Environmental Toxicology and Chemistry 2:2197–2207.

    Article  Google Scholar 

  • McKevlin, M. R., D. D. Hook, and W. H. McKee, Jr. 1995. Growth and nutrient use efficiency of water tupelo seedlings in flooded and well-drained soils. Tree Physiology 15:753–758.

    PubMed  Google Scholar 

  • McKevlin, M. R., D. D. Hook, and A. Rozelle. 1998. Adaptations of plants to flooding and soil waterlogging. In M. G. Messina and W. H. Conner (eds.) Southern Forested Wetlands: Ecology and Management. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Malanson, G. P. and J. A. Kupfer. 1993. Simulated fate of leaf litter and large woody debris at a riparian cutbank. Canadian Journal of Forest Research 23:582–590.

    Article  Google Scholar 

  • Maltby, E. 1986. Waterlogged Wealth. International Institute of Environmental Development. London, England and Washington, DC, USA.

  • Marks, G. C. and R. C. Foster. 1983. Structure, morphogenesis, and ultrastructure of ectomycorrhizae. p. 1–41. In T. T. Kozlowski (ed.) Ectomycorrhizae: Their Ecology and Physiology. Academic Press, New York, NY, USA.

    Google Scholar 

  • Marschner, H. 1995. Mineral Nutrition of Higher Plants. Academic Press, London, England.

    Google Scholar 

  • Miller, J. R., T. T. Schultz, N. T. Hobbs, K. R. Wilson, D. L. Schrupp, and W. T. Baker. 1995. Changes in the landscape structure of a southeastern Wyoming riparian zone following shifts in stream dynamics. Biological Conservation 72:371–379.

    Article  Google Scholar 

  • Molles, M. C., C. S. Crawford, L. M. Ellis, N. H. Valett, and C. M. Dahm. 1998. Managed flooding for riparian ecosystem restoration. BioScience 48:749–756.

    Article  Google Scholar 

  • Naiman, R. J., R. E. Bilby, and P. A. Bisson. 2000. Riparian ecology and management in the Pacific coastal rain forest. BioScience 50:996–1011.

    Article  Google Scholar 

  • Nema, A. G. and A. K. Khare. 1992. Effect of waterlogging on some forest plants. Journal of Tropical Forestry 8:187–188.

    Google Scholar 

  • Neuman, D. S. and B. A. Smit. 1993. Root hypoxia-induced changes in the pattern of translatable mRNAs in poplar leaves. Journal of Experimental Botany 44:1781–1786.

    Article  CAS  Google Scholar 

  • Newsome, R. D., T. T. Kozlowski, and Z. C. Tang. 1982. Responses of Ulmus americana seedlings to flooding of soil. Canadian Journal of Botany 60:1688–1695.

    Article  Google Scholar 

  • Ni, B. R. and S. G. Pallardy. 1992. Stomatal and nonstomatal limitations to net photosynthesis in seedlings of woody angiosperms. Plant Physiology 99:1502–1508.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, C. and K. Berggren. 2000. Alterations of riparian ecosystems caused by river vegetation. BioScience 50:783–792.

    Article  Google Scholar 

  • Norby, R. J. and T. T. Kozlowski. 1983. Flooding and SO2 stress interaction in Betula papyrifera and B. nigra seedlings. Forest Science 29:739–750.

    Google Scholar 

  • Office of Technology Assessment. 1984. Wetlands. Their Use and Regulation. Office of Technology Assessment, Washington, DC. USA. OTA-0-206.

    Google Scholar 

  • Olien, W. C. 1989. Seasonal soil waterlogging influences water relations and leaf nutrient content of bearing apple trees. Journal of the American Society for Horticultural Science 114:537–542.

    Google Scholar 

  • Opara, L. U., C. J. Studman, and N. H. Banks. 1997. Fruit skin splitting and cracking. Horticultural Reviews 19:217–262.

    Google Scholar 

  • Opik, H. 1980. The Respiration of Higher Plants. Arnold, London. England.

    Google Scholar 

  • Osundina, M. A. and O. Osunubi. 1989. Adventitious roots, leaf abscission and nutrient status of flooded Gmelina and Tectona seedlings. Tree Physiology 5:473–483.

    PubMed  Google Scholar 

  • Pabst, R. J. and T. A. Spies. 1998. Distribution of herbs and shrubs in relation to landform and canopy cover in riparian forests of coastal Oregon. Canadian Journal of Botany 76:298–315.

    Article  Google Scholar 

  • Perata, P. and A. Alpi. 1991. Ethanol-induced injuries to carrot cells. The role of acetaldehyde. Plant Physiology 95:748–752.

    Article  CAS  PubMed  Google Scholar 

  • Perata, P. and A. Alpi. 1993. Plant responses to anaerobiosis. Plant Science 93:1–17.

    Article  CAS  Google Scholar 

  • Pereira, J. S. and T. T. Kozlowski. 1977. Variations among woody angiosperms in response to flooding. Physiologia Plantarum 41:184–192.

    Article  Google Scholar 

  • Peterson, D. L. and F. A. Bazzaz. 1984. Photosynthetic and growth responses of silver maple (Acer saccharinum L.) seedlings to flooding. American Midland Naturalist 11:261–272.

    Article  Google Scholar 

  • Petts, G. E. 1984. Impounded Rivers: Perspectives for Ecological Management. Wiley, Chichester, England.

    Google Scholar 

  • Pezeshki, S. R. 1993. Differences in patterns of photosynthetic responses to hypoxia in flood-tolerant and flood-sensitive tree species. Photosynthetica 28:423–430.

    Google Scholar 

  • Pezeshki, S. R. 1994. Responses of baldcypress (Taxodium distichum) seedlings to hypoxia: leaf protein content, ribulose-1,5-bis-phosphate carboxylase/oxygenase activity and photosynthesis. Photosynthetica 30:59–68.

    CAS  Google Scholar 

  • Pezeshki, S. R. and J. L. Chambers. 1985. Responses of cherrybark oak (Quercus falcata var. pagodaefolia) seedlings to short-term flooding. Forest Science 31:760–771.

    Google Scholar 

  • Pinay, G., C. Ruffinoni, and A. Fabre. 1995. Nitrogen cycling in two riparian forest soils under different geomorphic conditions. Biogeochemistry 30:9–29.

    Article  CAS  Google Scholar 

  • Poff, I. R., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks, and J. C. Stromberg. 1997. The natural flow regime. BioScience 47:769–784.

    Article  Google Scholar 

  • Pollock, M. M., R. J. Naiman, and T. A. Hanley. 1998. Plant species richness in forested and emergent wetlands? A test of biodiversity theory. Ecology 79:94–105.

    Google Scholar 

  • Ponnamperuma, F. N. 1972. Chemistry of submerged soils. Advances in Agronomy 24:29–95.

    Article  CAS  Google Scholar 

  • Ponnamperuma, F. N. 1984. Effect of flooding on soils. p. 9–45. In T. T. Kozlowski (ed.) Flooding and Plant Growth. Academic Press, Orlando, FL, USA.

    Google Scholar 

  • Postel, S. and S. Carpenter. 1997. Freshwater ecosystem services. p. 195–214. In G. C. Daly (ed.) Nature’s Services: Societal Dependence on Natural Ecosystems. Island Press. Washington, DC. USA.

    Google Scholar 

  • Putnam, J. A. 1951. Management of bottomland hardwoods. U.S. Department of Agriculture, Forest Service, Washington, DC, USA. Occasional Paper No. 116.

    Google Scholar 

  • Putnam, J. A., G. M. Furnival, and J. S. McKnight. 1960. Management and inventory of southern hardwoods. U.S. Department of Agriculture. Washington, DC, USA. Agriculture Handbook No. 181.

    Google Scholar 

  • Reece, C. F. and S. J. Riha. 1991. Role of root systems of eastern larch and white spruce in response to flooding. Plant, Cell and Environment 14:229–234.

    Article  Google Scholar 

  • Regehr, D. L., F. A. Bazzaz, and W. R. Boggess. 1975. Photosynthesis, transpiration and leaf conductance of Populus deltoides in relation to flooding and drought. Photosynthetica 9:52–61.

    Google Scholar 

  • Reich, P. B. and R. Borchert. 1984. Water stress and tree phenology in tropical dry forest in the lowlands of Costa Rica. Journal of Ecology 72:61–74.

    Article  Google Scholar 

  • Reid, C. P. P. 1984. Mycorrhizae: a root-soil interface in plant nutrition. p. 29–50. In R. L. Told and J. E. Giddens (eds.) Microbial Plant Interactions. American Society of Agronomy, Madison, WI, USA. Special Publication 47.

    Google Scholar 

  • Reid, D. M. and K. J. Bradford. 1984. Effect of flooding on hormone relations. p. 195–219. In T. T. Kozlowski (ed.) Flooding and Plant Growth. Academic Press, Orlando, FL, USA.

    Google Scholar 

  • Richardson, C. J. 1995. Wetlands ecology. p. 535–550. In W. A. Nierenberg (ed.) Encyclopedia of Environmental Biology, Volume 3. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Rood, S. B., J. M. Mahoney, D. E. Reid, and L. Zilm. 1995. Instream flows and the decline of riparian cottonwoods along the St. Mary River, Alberta. Canadian Journal of Botany 73:1250–1260.

    Article  Google Scholar 

  • Rosales, J., G. Petts, and C. Knab-Visto. 2001. Ecological gradients within the riparian forests of the lower Caura River, Venezuela. Plant Ecology 152:101–118.

    Article  Google Scholar 

  • Rosen, C. J. and R. M. Carlson. 1984. Influence of root zone oxygen stress on potassium and ammonium absorption by Myrobalan plum rootstock. Plant and Soil 80:345–353.

    Article  CAS  Google Scholar 

  • Sakai, T., H. Tanaka, M. Shibata, W. Suzuki, H. Nomiya, T. Kanazashi, S. Iida, and T. Nakashizuka. 1999. Riparian disturbance and community structure of a Quercus-Ulmus forest in central Japan. Plant Ecology 140:99–109.

    Article  Google Scholar 

  • Salo, J., R. Kalliola, I. Häkkinen, Y. Mäkinen, P. Niemata, M. Puhakka, and P. D. Coley. 1986. River dynamics and the diversity of Amazon lowland forest. Nature 322:254–258.

    Article  Google Scholar 

  • Scarano, F. R. and R. M. M. Crawford. 1992. Ontogeny and concept of anoxia-tolerance. The case of the leguminous tree Parkia pendula. Journal of Tropical Ecology 8:349–352.

    Article  Google Scholar 

  • Schaffer, P. 1998. Flooding responses and water-use efficiency of subtropical and tropical fruit trees in an environmentally-sensitive wetland. Annals of Botany 81:475–481.

    Article  Google Scholar 

  • Schaffer, P., B. C. Andersen, and R. C. Ploetz. 1993. Responses of fruit crops to flooding. Horticultural Reviews 13:257–313.

    Google Scholar 

  • Scott, M. L., J. M. Friedman, and G. T. Auble. 1996. Fluvial processes and the establishment of bottomland trees. Geomorphology 14:327–331.

    Article  Google Scholar 

  • Sena Gomes, A. R. and T. T. Kozlowski. 1980a. Growth responses and adaptations of Fraxinus pennsylvanica seedlings to flooding. Plant Physiology 66:267–271.

    Article  Google Scholar 

  • Sena Gomes, A. R. and T. T. Kozlowski. 1980b. Responses of Melaleuca quinquenervia seedlings to flooding. Physiologia Plantarum 49:373–377.

    Article  Google Scholar 

  • Sena Gomes, A. R. and T. T. Kozlowski. 1980c. Effect of flooding on growth of Eucalyptus camaldulensis and E. globulus seedlings. Oecologia 46:139–142.

    Article  Google Scholar 

  • Sena Gomes, A. R. and T. T. Kozlowski. 1980d. Responses of Pinus halepensis seedlings to flooding. Canadian Journal of Forest Research 10:308–311.

    Google Scholar 

  • Shanklin, J. J. and T. T. Kozlowski. 1985. Effects of flooding of soil on growth and subsequent responses of Taxodium distichum seedlings to SO2. Environmental Pollution 38:199–212.

    Article  CAS  Google Scholar 

  • Shaybany, B. and G. C. Martin. 1977. Abscisic acid identification and its quantification in leaves of Juglans seedlings during waterlogging. Journal of the American Society for Horticultural Science 102:300–302.

    CAS  Google Scholar 

  • Sipp, S. K. and D. T. Bell. 1974. The response of net photosynthesis to flood conditions in seedlings of Acer saccharinum (silver maple). University of Illinois, Urbana, IL, USA. Forest Research Paper Number 74–9.

    Google Scholar 

  • Smith, D. W. and N. E. Linnartz. 1980. The southern hardwood region. p. 145–230. In J. W. Barrett (ed.) Regional Silviculture of the United States. Wiley, New York, NY, USA.

    Google Scholar 

  • Smith, K. A. and S. W. F. Restall. 1971. The occurrence of ethylene in anaerobic soil. Journal of Soil Science 22:430–443.

    Article  CAS  Google Scholar 

  • Smith, M. W. and R. D. Bourne. 1989. Seasonal effects of flooding on greenhouse-grown seedling pecan trees. HortScience 24:81–83.

    Google Scholar 

  • Sparks, R. E., J. C. Nelson, and Y. Yin. 1998. Naturalization of the flood regime in regulated rivers. BioScience 48:706–720.

    Article  Google Scholar 

  • Stolzy, L. H. and R. E. Sojka. 1984. Effects of flooding on plant disease. p. 221–264. In T. T. Kozlowski (ed.) Flooding and Plant Growth. Academic Press, Orlando, FL, USA.

    Google Scholar 

  • Stone, E. C. and R. B. Vasey. 1965. Preservation of the coast redwood on alluvial flats. Science 159:157–161.

    Article  Google Scholar 

  • Stromberg, J. C. 2001. Biotic integrity of Platanus wrightii riparian forests in Arizona: First approximation. Forest Ecology and Management 142:251–256.

    Article  Google Scholar 

  • Stromberg, J. C., J. Fry, and D. T. Patten. 1997. Marsh development after large floods in an alluvial arid-land river. Wetlands 17:292–300.

    Article  Google Scholar 

  • Syvertsen, J. P., R. M. Zablotowicz, and M. L. Smith, Jr. 1983. Soil temperature and flooding effects on two species of citrus. I. Plant growth and hydraulic conductivity. Plant and Soil 72:3–12.

    Article  Google Scholar 

  • Tang, Z. C. and T. T. Kozlowski. 1982a. Some physiological and morphological responses of Quercus macrocarpa seedlings to flooding. Canadian Journal of Forest Research 12:196–202.

    Google Scholar 

  • Tang, Z. C. and T. T. Kozlowski. 1982b. Physiological, morphological, and growth responses of Platanus occidentalis seedlings to flooding. Plant and Soil 66:243–255.

    Article  Google Scholar 

  • Tang, Z. C. and T. T. Kozlowski. 1982c. Some physiological and growth responses of Betula papyrifera seedlings to flooding. Physiologia Plantarum 55:415–420.

    Article  Google Scholar 

  • Tang, Z. C. and T. T. Kozlowski. 1983. Responses of Pinus banksiana and Pinus resinosa seedlings to flooding. Canadian Journal of Forest Research 13:633–639.

    Article  Google Scholar 

  • Tang, Z. C. and T. T. Kozlowski. 1984. Ethylene production and morphological adaptations of woody plants to flooding. Canadian Journal of Botany 62:1659–1664.

    Article  CAS  Google Scholar 

  • Teskey, R. O., J. A. Fites, L. J. Samuelson, and B. C. Bongarten. 1986. Stomatal and nonstomatal limitations to net photosynthesis in Pinus taeda L. under different environmental conditions. Tree Physiology 2:131–142.

    PubMed  Google Scholar 

  • Thomas, D. H. L. 1996. Dam construction and ecological change in the riparian forest of the Hadejia-Jamaare floodplain, Nigeria. Land Degradation and Development 7:279–285.

    Article  Google Scholar 

  • Tiner, R. W. 1995. Wetland restoration and creation. p. 517–534. In W.A. Nierenberg (ed.) Encyclopedia of Environmental Biology. Volume 3. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Topa, M. A. and K. W. McLeod. 1986. Aerenchyma and lenticel formation in pine seedlings: A possible avoidance mechanism to anaerobic growth conditions. Physiologia Plantarum 68:540–550.

    Article  Google Scholar 

  • Tsukahara, H. and T. T. Kozlowski. 1984. Effect of flooding on growth of Larix leptolepis seedlings. Journal of the Japanese Forestry Society 66:33–66.

    Google Scholar 

  • Tsukahara, H. and T. T. Kozlowski. 1985. Importance of adventitious roots to growth of flooded Platanus occidentalis seedlings. Plant and Soil 88:123–132.

    Article  Google Scholar 

  • Wilde, S. A. 1954. Mycorrhizal fungi: Their distribution and effect on tree growth. Soil Science 78:23–31.

    Article  Google Scholar 

  • Yamamoto, F. and T. T. Kozlowski. 1986. Effect of flooding of soil on growth, stem anatomy, and ethylene production of Thuja orientalis seedlings. International Association of Wood Anatomists Bulletin, New Series 8:11–19.

    Google Scholar 

  • Yamamoto, F. and T. T. Kozlowski. 1987a. Effects of flooding, tilting of stems and ethrel application on growth, stem anatomy, and ethylene production of Pinus densiflora seedlings. Journal of Experimental Botany 38:293–310.

    Article  CAS  Google Scholar 

  • Yamamoto, F. and T. T. Kozlowski. 1987b. Effect of flooding of soil on growth, stem anatomy, and ethylene production of Cryptomeria japonica seedlings. Scandinavian Journal of Forest Research 2:45–50.

    Article  Google Scholar 

  • Yamamoto, F. and T. T. Kozlowski. 1987c. Regulation by auxin and ethylene of responses of Acer negundo seedlings to flooding of soil. Environmental and Experimental Botany 27:329–340.

    Article  CAS  Google Scholar 

  • Yamamoto, F., S. Sakata, and K. Terazawa. 1995. Physiological, morphological and anatomical responses of Fraxinus mandshurica seedlings to flooding. Tree Physiology 15:713–719.

    PubMed  Google Scholar 

  • Yarie, J., J. Viereck, K. Van Cleve, and P. Adams. 1998. Flooding and ecosystem dynamics along the Tanana. BioScience 48:690–695.

    Article  Google Scholar 

  • Zhang, J. and W. J. Davies. 1990. Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant Cell and Environment 13:277–286.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlowski, T.T. Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands 22, 550–561 (2002). https://doi.org/10.1672/0277-5212(2002)022[0550:PEIOFO]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2002)022[0550:PEIOFO]2.0.CO;2

Key Words

Navigation